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ABSTRACT 19 

Treatment duration is one of the most important factors that patients consider when deciding 20 

whether to have orthodontic treatment or not. This study aimed to build and compare Machine 21 

Learning (ML) models for prediction of orthodontic treatment length and to identify factors affect- 22 

ing the duration of orthodontic treatment using the ML approach. Records of 518 patients who suc- 23 

cessfully finished orthodontic treatment were used in this study. 70% of the patient data was used 24 

for training ML models, and 30% of data was used for testing these models. We applied and com- 25 

pared nine machine-learning algorithms: Simple Linear Regression, Modified Simple Linear Regres- 26 

sion, Polynomial Linear Regression, K Nearest Neighbor, Simple Decision Tree, Bagging Regressor, 27 

Random Forest, Gradient Boosting Regression, and AdaBoost Regression. We then calculated the 28 

importance of patient data features for the ML models with the highest performance. The best over- 29 

all performance was obtained through Bagging Regressor and AdaBoost Regression ML methods. 30 

The most important features in predicting treatment length were age, crowding, artificial intelli- 31 

gence case difficulty score, overjet, and overbite. Without patient information, several ML algo- 32 

rithms showed comparable performance for predicting treatment length. Bagging and AdaBoost 33 

showed the best performance when patient information, including age, malocclusion, and crowd- 34 

ing, was provided. 35 
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 37 

1. Introduction 38 

 Treatment duration is one of the most important factors that patients consider when  39 

deciding whether to have orthodontic treatment [1]. An exact and accurate prediction of 40 

the duration of the total orthodontic treatment might motivate patients or prepare them 41 

for what to expect (Mavreas and Athanasiou, 2008) [2]. Additionally, a reliable idea of the 42 

treatment duration helps the orthodontist to better plan the overall treatment and the se- 43 

quence of appointments (Fink and Smith, 1992; Mavreas and Athanasiou, 2008) [1,2]. Ear- 44 

lier studies reported that orthodontic treatment employing fixed appliances typically lasts 45 

14 to 33 months (Kafle et al., 2019; Tsichlaki et al., 2016) [3,4] with a mean around 22 to 24 46 
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months, depending on the discrepancy being treated (Aljehani and Baeshen, 2018; Si- 47 

mister, 2007) [5]. 48 

Factors influencing the duration of orthodontic treatment are manifold. They range 49 

from general malocclusion, anatomic/biologic factors (like bone morphology, patient age, 50 

and disease), the type of treatment (extraction versus non-extraction), to the planned treat- 51 

ment technique (Bhikoo et al., 2018) [6]. A further aspect might be patient cooperation, 52 

which is closely related to socio-economic factors and education (Kafle et al., 2019; Ma- 53 

vreas and Athanasiou, 2008; Tsichlaki et al., 2016) [2–4]. 54 

As teeth have to be moved through the bone, one decisive factor influencing the speed 55 

of orthodontic tooth movement and thus treatment duration is bone metabolism, i.e. the 56 

ability of bone to remodel as a result of the applied force systems (Abbing et al., 2020) [7]. 57 

Bone metabolism depends, in part, on age, the bony structure itself, and/or systemic dis- 58 

ease (Abbing et al., 2020; Kaur and El-Bialy, 2020; Landin-Ramos, 2020) [7–9].  One could 59 

approach the prediction of treatment duration via bone morphology. Here, the bone struc- 60 

ture and density, the thickness of the cortical bone, and the structure of the spongious 61 

bone would have to be analyzed in detail. An approach using fractal analysis of panoramic 62 

x-ray images has recently been presented (Cesur et al., 2020) [10], while more classical 63 

approaches use indices of severity, such as The American Board of Orthodontics Discrep- 64 

ancy Index (ABO-DI), to give an answer to patients' frequent question, "When do I get my 65 

braces off?" (Aljehani and Baeshen, 2018) [5]. 66 

Artificial intelligence (AI) is bringing a paradigm shift to healthcare, powered by the 67 

increasing availability of healthcare data and the rapid progress of analytics techniques 68 

[11]. Machine learning (ML) is a subset of AI techniques, used to determine complex mod- 69 

els and extract knowledge. In clinical practice, ML predictive models can assist the clini- 70 

cian in decision-making regarding individual patient care [12,13].  71 

To our knowledge, ML has not been used to predict orthodontic treatment length. 72 

Therefore, our study aimed to build and compare ML models to predict orthodontic treat- 73 

ment length and to identify factors affecting the duration of orthodontic treatment using 74 

a ML approach. 75 

2. Materials and Methods 76 

We retrospectively evaluated the records of 631 patients who completed orthodontic 77 

treatment at All Care Orthodontics, Chicago, IL. Ethical approval (IRP Number 20193360) 78 

for this study was obtained from the research ethics committee of WIRB-Copernicus. All 79 

experiments were done in accordance with approved guidelines. 80 

The inclusion criteria were as follows: Patients who had 1) comprehensive orthodontic 81 

treatment; 2) successfully finished their orthodontic treatment without disruption during 82 

the treatment period; 3) a complete set of standard orthodontic records pre-treatment and 83 

at de-bond appointment; 4) treatment by a board-certified orthodontist. The exclusion cri- 84 

teria were patients who had: 1) limited orthodontic treatment; 2) phase 1 orthodontic treat- 85 

ment; 3) treatment disrupted and, consequently, increased treatment length; 4) more than 86 

four failed appointments; 5) treatment under Medicaid coverage; and  6) craniofacial syn- 87 

dromes. A total of 518 patients met the inclusion and exclusion criteria, and their records 88 

were used in this study. 89 

The following parameters were collected for each patient: 1) Gender, race, and age 90 

when treatment started; 2) commute distance to the orthodontic office in miles; 3) overjet,  91 

overbite, maxillary and mandibular arch crowding calculated in mm; 4) malocclusion clas- 92 

sification (I, II and III);  5) actual treatment length, in months, starting from bonding to 93 

debonding appointment; 6) estimated treatment length determined by an orthodontist; 7) 94 

treatment difficulty estimated by artificial intelligence (AI Score: 1, Easy to 5, Very Diffi- 95 

cult) using a deep learning model, previously published by Talaat et al. 2021[13]. 96 

Implementation of Machine Learning Models 97 

A total of nine machine learning algorithms were tested. These included: 1) Simple 98 

Linear Regression (Baseline Model); 2) Modified Simple Linear Regression; 3) Polynomial 99 



Linear Regression; 4) K Nearest Neighbor (KNN); 5) Simple Decision Tree; 6) Bagging 100 

Regressor; 7) Random Forest; 8) Gradient Boosting Regression; and 9) AdaBoost Regres- 101 

sion[14].  102 

The cases corresponding to each of the possible outcomes were divided into two 103 

groups: 70% of cases were used for ML training and the remaining 30% for ML testing. 104 

The same training and testing sets were used with every model to ensure fair comparison. 105 

After each model was trained and optimized using 70% of the patient sample, the remain- 106 

ing 30% of cases served as the testing dataset to evaluate the model's predictive ability. 107 

We compared all models using three indicators: mean squared error (MSE) on training 108 

data, MSE on testing data, and coefficient of determination (R2) of the model on the entire 109 

dataset. Ideally, the testing MSE should be as low as possible. A training MSE that is much 110 

lower than testing MSE usually indicates model overfitting on the training dataset. In ad- 111 

dition, a higher R2 score is desirable, representing the proportion of the variance for the 112 

dependent variable (actual treatment time) that's explained by independent variables in a 113 

regression model. Furthermore, we analyzed residual values according to the statistical 114 

best practices and generated feature Importance and Permutation Importance for each 115 

model. 116 

3. Results 117 

This study used data from 518 patients, 281 females and 237 males. The mean patient 118 

age was 17.49 +/- 8.15 years, and the mean patient treatment time was 26.10 +/- 8.15 119 

months; the mean crowding was 3.18 +/- 3.64 mm for the maxillary arch and 2.79 +/- 3.56 120 

mm for the mandibular arch (negative crowding represents spacing); Class I malocclusion 121 

was present in 299 cases, Class II in 145, and Class III in 74. The mean treatment difficulty 122 

estimated by AI Score = 2.53 +/- 0.81. The mean patient commute distance to the orthodon- 123 

tic office was = 3.44 +/- 4.979 miles (Table 1) (Figures 1 and 2). 124 

 125 

Table 1. Description of Patient Demographic Data 126 

 N = 
518 

Actual 
treatment 
time 
(months) 

Overjet 
(mm) 

Overbite 
(mm) 

Maxillary 
crowding 
(mm) 

Mandibular 
crowding 
(mm) 

AI 
score 

Patient 
age 
(years) 

Distance to 
treatment 
office 
(miles) 

Mean  26.101 2.49 2.844 3.178 2.792 2.527 17.49 3.445 

STD  8.146 2.699 1.752 3.644 3.56 0.808 8.15 4.979 

Min  2.6 -12 -6 -10 -16 2 8.48 1.06 

25% 20 1 2 1 1 2 12.59 1.06 

50% 25.6 2 3 3 3 2 14.23 1.41 

75% 31.575 4 4 5 5 3 19.977 3.77 

Max  47.8 14 8 18 15 5 62.12 34.11 

 127 

 128 



 129 

Figure 1. Histogram of patient age distribution. 130 

 131 

 132 

Figure 2. Histograms showing (a) actual treatment time distribution and (b) actual treatment time based on malocclu- 133 

sion Class. (c)  Boxplot showing malocclusion versus actual treatment time. 134 

 135 



 136 

Figure 3. Heat map showing the correlation between variables. 137 

The correlation between variables shown in Figure 3 reveals that the overbite and over- 138 

jet values were highly correlated (0.43). In addition, both maxillary and mandibular 139 

crowding values are highly correlated (0.51). All other pairs did not show significant cor- 140 

relations. 141 

Different ML models behave differently when processing the inputs. Accordingly, the 142 

performance of these models also varies. For the ML algorithms evaluated, the following 143 

was observed: Bagging and AdaBoost are the best models, with much lower MSE values 144 

for both training and testing datasets and a higher R2 score to explain the variances (Table 145 

2) (Figure 4 and 5  ) . 146 

Table 2. Performance Comparison of the ML Models 147 

ML Model Training MSE Testing MSE R2 Score 

Simple Linear Regression 59.65 66.76 0.067 

Modified Simple Linear Model 58.85 65.21 0.082 

Polynomial Linear Regression 48.85 79.25 0.124 

KNN (best k = 9) 79.40 81.25 -0.266 

Decision Tree (w/AI score) 51.99 71.97 0.124 



Decision Tree (w/o AI score) 55.65 58.20 0.148 

Bagging (w/AI score) 40.86 60.95 0.308 

Bagging (w/o AI score) 43.08 55.31 0.276 

Random Forest (w/AI score)  47.02 58.65 0.237 

Random Forest (w/o AI score) 50.29 54.32 0.222 

Gradient Boosting (w/AI score) 59.85 54.08 0.122 

Gradient Boosting (w/o AI score) 61.76 54.80 0.100 

AdaBoost (w/AI score) 38.55 58.10 0.329 

AdaBoost (w/o AI score) 42.38 55.08 0.302 

MSE, mean squared error; R2, coefficient of determination 148 

The charts shown in the following figures identify the importance of each indicator in 149 

the ML models through Feature Importance and Permutation Importance. The R2 scores 150 

of between 0.27 and 0.33 are significantly larger than the chance level, making it possible 151 

to subtract individual feature importance and permutation importance to probe which 152 

features are most predictive. 153 

Feature importance, as the name suggests, shows the importance of each feature vari- 154 

able in the model. For a complex such as Bagging, Random Forest, or AdaBoost, feature 155 

importance is the average of all sub-models. Permutation importance measures the de- 156 

crease in a model score when a single feature value is randomly shuffled. This procedure 157 

breaks the relationship between the feature and the target. Therefore, this drop in the 158 

model score indicates how much the model depends on the feature. 159 

With or without AI scores, the feature importance shows that patient age, maxillary 160 

crowding, and mandibular crowding are the three most predictive components in the Bag- 161 

ging model (Figure 6). Overjet, overbite, and race identification also have quite significant 162 

feature importance. 163 

 164 

 165 
Figure 4. scatterplots comparing actual treatment time vs predicted treatment time for 166 

bagging model. 167 

 168 
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 170 
 171 

Figure 5. scatterplots comparing actual treatment time vs predicted treatment time for 172 

AdaBoost model. 173 

 174 

 175 

Figure 6. Feature importance for the Bagging model. 176 

 177 

 178 



 179 

Figure 7.  Permutation importance for the Bagging model 180 

We can see that patient age, maxillary crowding, and mandibular crowding are also 181 

the top predictive variables measured by permutation importance in the Bagging model 182 

(Figure 7). In addition, figure 5 shows that the AI score played an important role in the 183 

model including the AI score as a predictive variable. 184 

 185 

Figure 8. Feature importance in AdaBoost model. 186 

With results very similar to the Bagging model, the feature importance of the AdaBoost 187 

model (with or without AI score; Figure 8) shows that patient age, maxillary crowding, 188 

and mandibular crowding are the three most predictive components. Overjet, overbite 189 

and race identification also have significant feature importance. 190 

 191 



 192 

Figure 9. Permutation importance for AdaBoost model. 193 

 194 

The permutation importance results of AdaBoost (Figure 9) show results similar to 195 

those of the Bagging models, with patient age, maxillary and mandibular crowding being 196 

more significant than other variables. In the AdaBoost model without AI score, overjet 197 

stood out as the second most important variable. 198 

4. Discussion  199 

The ML models built in this study were used to predict the orthodontic treatment 200 

length based on multiple factors, including patient demographics, types of malocclusions, 201 

and measures of malocclusion severity such as crowding, overjet and AI score for treat- 202 

ment difficulty. When we evaluated the performance of different ML models, we found 203 

that the Bagging and AdaBoost models had better performance than the other ML models 204 

tested. Bagging, or Bootstrap Aggregating, is based on the decision tree model. It gener- 205 

ates multiple samples of training data via bootstrapping, training a deeper decision tree 206 

on each sample of training data, then outputs the averaged results of all models, i.e., ag- 207 

gregating. Compared to regular decision tree models, bagging enjoys the benefits of high 208 

expressiveness and low variances. AdaBoost is a complex boosting decision tree regres- 209 

sion model that uses multiple subsequent trees of residuals to build a combined, e.g., 210 

boosting. AdaBoost assigns larger weights to outliers in each iteration of the boosting 211 

model building. This makes AdaBoost especially efficient compared to other boosting 212 

methods [15]. We tested the performance of the ML models with and without the AI score 213 

[13] Adding the AI score improves the ML models' performances, especially evident with 214 

the Bagging and AdaBoost models. The AI score is based on malocclusion detection and 215 

assessment by AI from clinical images, including crowding, spacing, deep bite, open bite, 216 

and crossbite [13]. AI score is a novel method for assessing the case difficulty, confirming 217 

that the more difficult the case, the longer the treatment duration.  218 

We assessed the feature importance for the ML predictive models; patient age, max- 219 

illary crowding, and mandibular crowding were the top features. Patient age could be a 220 

contributing factor due to the biological differences between adolescents and adults. 221 

Vayda et al. in 1995 reported significant differences in treatment length between adults 222 

and adolescents [16]. Other studies reported no significant differences in treatment length 223 

between adults and adolescents [17]. Additional parameters contribute to treatment 224 

length prediction by ML. For example, crowding, overjet, overbite, and AI score are all 225 

measures for the severity of the malocclusion; previous studies found that quantitative 226 

malocclusion indices, such as peer assessment rating (PAR) and the objective grading sys- 227 

tem (OGS), correlated with treatment length [3]. Other factors were found to have less 228 

contribution, such as gender, race, and malocclusion classification into Class I, II, and III; 229 



this aligns with previous findings [1,3,7]. Unexplored factors may also contribute to treat- 230 

ment length, including orthodontic technique employed, the operator skill and experi- 231 

ence, and patient compliance. However, the impact of these factors is unknown and needs 232 

to be examined.  233 

The scope of this study was to build a predictive model that can be used at initial 234 

patient screening or consultation. Other parameters can be used for fine-tuning of the ML 235 

models in the future. Furthermore, individual/subjective issues create more variations 236 

than the quantifiable factors presented in the study. However, we can perform additional 237 

studies to correlate those numeric variables to better understanding of impact on treat- 238 

ment length. A clinical application of the ML predictive models presented in this study 239 

could be a software or a mobile application with a graphical user interface (GUI) that can 240 

be used during the orthodontic screening or consultation to provide helpful information 241 

for both the patient and the orthodontist (Figure 10). Furthermore, these ML models could 242 

be integrated with orthodontic software currently available. 243 

 244 

Figure 10. Graphical user interface for mobile application for treatment length prediction. 245 

5. Conclusion  246 

We achieved our objective of developing predictive models-based ML methods. Bagging 247 

and AdaBoost ML methods provided good predictability for orthodontic treatment length 248 

when patient information, such as age, malocclusion, and crowding, was provided. Fur- 249 

thermore, the study demonstrated the relative importance of each factor. Additional stud- 250 

ies should be done on large, diverse datasets to include more variables and improve the 251 

performance of ML models for understanding orthodontic treatment length. 252 

 253 
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